了解神经网络的决策过程很难。解释的一种重要方法是将其决定归因于关键特征。尽管提出了许多算法,但其中大多数仅改善了模型的忠诚。但是,真实的环境包含许多随机噪声,这可能会导致解释中的波动。更严重的是,最近的作品表明,解释算法容易受到对抗性攻击的影响。所有这些使解释很难在实际情况下信任。为了弥合这一差距,我们提出了一种模型 - 不稳定方法\ emph {特征归因}(METFA)的中位数测试,以量化不确定性并提高使用理论保证的解释算法的稳定性。 METFA具有以下两个函数:(1)检查一个特征是显着重要还是不重要,并生成METFA相关的映射以可视化结果; (2)计算特征归因评分的置信区间,并生成一个平滑的图表以提高解释的稳定性。实验表明,METFA提高了解释的视觉质量,并在保持忠诚的同时大大减少了不稳定。为了定量评估不同噪音设置下解释的忠诚,我们进一步提出了几个强大的忠诚指标。实验结果表明,METFA平滑的解释可以显着提高稳健的忠诚。此外,我们使用两种方案来显示METFA在应用程序中的潜力。首先,当应用于SOTA解释方法来定位语义分割模型的上下文偏见时,METFA很重要的解释使用较小的区域来维持99 \%+忠实。其次,当通过不同的以解释为导向的攻击进行测试时,METFA可以帮助捍卫香草,以及自适应的对抗性攻击,以防止解释。
translated by 谷歌翻译
视觉预读(VLP)模型最近成功地促进了许多跨模式下游任务。大多数现有作品通过比较微调的下游任务性能来评估其系统。但是,只有平均下游任务准确性才能提供有关每种VLP方法的优缺点的几乎没有信息,更不用说有关社区如何改善系统的见解。受清单进行自然语言处理的启发,我们引入了VL-CheckList,这是一个新颖的框架,以了解VLP模型的功能。所提出的方法将VLP模型的图像定位能力分为三类:对象,属性和关系,并使用新颖的分类法进一步分解这三个方面。我们进行了全面的研究,通过提出的框架分析了七个最近流行的VLP模型。结果通过揭示了仅在下游任务评估中看不见的模型之间的细粒度差异来证实所提出的方法的有效性。进一步的结果表明,在构建更好的VLP模型方面有希望的研究方向。数据和代码:https://github.com/om--ai-lab/vl-checklist
translated by 谷歌翻译
数据估算已被广泛探索以解决缺失的数据问题。显着增加的不完整数据量使得归纳模型在许多现实生活中的计算上不可行。在本文中,我们提出了一个名为SCI的有效可扩展的估算系统,以显着加速在大规模不完整数据的准确性保证下进行可分解的生成对抗性归档模型的培训。 SCI包括两个模块,可差异的拒绝建模(DIM)和样本量估计(SSE)。 Dim利用新的遮蔽沉降角分歧功能,使任意生成的逆势归零模型可微分,而对于这种可分辨动的载体模型,SSE可以估计适当的样本大小,以确保用户指定的最终模型的借调准确性。在几个现实生活中的大规模数据集上进行了广泛的实验证明,我们的提出系统可以通过7.1倍加速生成的对抗性模型培训。使用大约7.6%的样本,SCIS在计算时间较短的情况下,使用最先进的估算方法产生竞争精度。
translated by 谷歌翻译
使用图像文本对的对比语言图像预测(剪辑)在零拍摄和传输学习设置中的图像分类中取得了令人印象深刻的结果。但是,我们表明,直接应用此类模型以识别对象检测的图像区域导致由于域移位导致的性能差:剪辑训练以与文本描述的整体匹配,而不捕获图像之间的细粒度对齐地区和文本跨度。为了缓解此问题,我们提出了一种称为RegionClip的新方法,可显着扩展剪辑以学习区域级视觉表示,从而在图像区域和文本概念之间实现细粒度对齐。我们的方法利用剪辑模型将图像区域与模板标题匹配,然后预先列出我们的模型以对准要素空间中的这些区域文本对。将预磨料模型转移到开放词汇对象检测任务时,我们的方法显着优于3.8 AP50和2.2 AP的最新技术,分别用于COCO和LVIS数据集的新型类别。更多,学习区域表示支持对象检测的零拍摄推断,显示了对COCO和LVIS数据集的有希望的结果。我们的代码可在https://github.com/microsoft/regionclip上获得。
translated by 谷歌翻译
We introduce a new tool for stochastic convex optimization (SCO): a Reweighted Stochastic Query (ReSQue) estimator for the gradient of a function convolved with a (Gaussian) probability density. Combining ReSQue with recent advances in ball oracle acceleration [CJJJLST20, ACJJS21], we develop algorithms achieving state-of-the-art complexities for SCO in parallel and private settings. For a SCO objective constrained to the unit ball in $\mathbb{R}^d$, we obtain the following results (up to polylogarithmic factors). We give a parallel algorithm obtaining optimization error $\epsilon_{\text{opt}}$ with $d^{1/3}\epsilon_{\text{opt}}^{-2/3}$ gradient oracle query depth and $d^{1/3}\epsilon_{\text{opt}}^{-2/3} + \epsilon_{\text{opt}}^{-2}$ gradient queries in total, assuming access to a bounded-variance stochastic gradient estimator. For $\epsilon_{\text{opt}} \in [d^{-1}, d^{-1/4}]$, our algorithm matches the state-of-the-art oracle depth of [BJLLS19] while maintaining the optimal total work of stochastic gradient descent. We give an $(\epsilon_{\text{dp}}, \delta)$-differentially private algorithm which, given $n$ samples of Lipschitz loss functions, obtains near-optimal optimization error and makes $\min(n, n^2\epsilon_{\text{dp}}^2 d^{-1}) + \min(n^{4/3}\epsilon_{\text{dp}}^{1/3}, (nd)^{2/3}\epsilon_{\text{dp}}^{-1})$ queries to the gradients of these functions. In the regime $d \le n \epsilon_{\text{dp}}^{2}$, where privacy comes at no cost in terms of the optimal loss up to constants, our algorithm uses $n + (nd)^{2/3}\epsilon_{\text{dp}}^{-1}$ queries and improves recent advancements of [KLL21, AFKT21]. In the moderately low-dimensional setting $d \le \sqrt n \epsilon_{\text{dp}}^{3/2}$, our query complexity is near-linear.
translated by 谷歌翻译
New architecture GPUs like A100 are now equipped with multi-instance GPU (MIG) technology, which allows the GPU to be partitioned into multiple small, isolated instances. This technology provides more flexibility for users to support both deep learning training and inference workloads, but efficiently utilizing it can still be challenging. The vision of this paper is to provide a more comprehensive and practical benchmark study for MIG in order to eliminate the need for tedious manual benchmarking and tuning efforts. To achieve this vision, the paper presents MIGPerf, an open-source tool that streamlines the benchmark study for MIG. Using MIGPerf, the authors conduct a series of experiments, including deep learning training and inference characterization on MIG, GPU sharing characterization, and framework compatibility with MIG. The results of these experiments provide new insights and guidance for users to effectively employ MIG, and lay the foundation for further research on the orchestration of hybrid training and inference workloads on MIGs. The code and results are released on https://github.com/MLSysOps/MIGProfiler. This work is still in progress and more results will be published soon.
translated by 谷歌翻译
In the scenario of black-box adversarial attack, the target model's parameters are unknown, and the attacker aims to find a successful adversarial perturbation based on query feedback under a query budget. Due to the limited feedback information, existing query-based black-box attack methods often require many queries for attacking each benign example. To reduce query cost, we propose to utilize the feedback information across historical attacks, dubbed example-level adversarial transferability. Specifically, by treating the attack on each benign example as one task, we develop a meta-learning framework by training a meta-generator to produce perturbations conditioned on benign examples. When attacking a new benign example, the meta generator can be quickly fine-tuned based on the feedback information of the new task as well as a few historical attacks to produce effective perturbations. Moreover, since the meta-train procedure consumes many queries to learn a generalizable generator, we utilize model-level adversarial transferability to train the meta-generator on a white-box surrogate model, then transfer it to help the attack against the target model. The proposed framework with the two types of adversarial transferability can be naturally combined with any off-the-shelf query-based attack methods to boost their performance, which is verified by extensive experiments.
translated by 谷歌翻译
Cashews are grown by over 3 million smallholders in more than 40 countries worldwide as a principal source of income. As the third largest cashew producer in Africa, Benin has nearly 200,000 smallholder cashew growers contributing 15% of the country's national export earnings. However, a lack of information on where and how cashew trees grow across the country hinders decision-making that could support increased cashew production and poverty alleviation. By leveraging 2.4-m Planet Basemaps and 0.5-m aerial imagery, newly developed deep learning algorithms, and large-scale ground truth datasets, we successfully produced the first national map of cashew in Benin and characterized the expansion of cashew plantations between 2015 and 2021. In particular, we developed a SpatioTemporal Classification with Attention (STCA) model to map the distribution of cashew plantations, which can fully capture texture information from discriminative time steps during a growing season. We further developed a Clustering Augmented Self-supervised Temporal Classification (CASTC) model to distinguish high-density versus low-density cashew plantations by automatic feature extraction and optimized clustering. Results show that the STCA model has an overall accuracy of 80% and the CASTC model achieved an overall accuracy of 77.9%. We found that the cashew area in Benin has doubled from 2015 to 2021 with 60% of new plantation development coming from cropland or fallow land, while encroachment of cashew plantations into protected areas has increased by 70%. Only half of cashew plantations were high-density in 2021, suggesting high potential for intensification. Our study illustrates the power of combining high-resolution remote sensing imagery and state-of-the-art deep learning algorithms to better understand tree crops in the heterogeneous smallholder landscape.
translated by 谷歌翻译
In this paper, we develop an efficient multi-scale network to predict action classes in partial videos in an end-to-end manner. Unlike most existing methods with offline feature generation, our method directly takes frames as input and further models motion evolution on two different temporal scales.Therefore, we solve the complexity problems of the two stages of modeling and the problem of insufficient temporal and spatial information of a single scale. Our proposed End-to-End MultiScale Network (E2EMSNet) is composed of two scales which are named segment scale and observed global scale. The segment scale leverages temporal difference over consecutive frames for finer motion patterns by supplying 2D convolutions. For observed global scale, a Long Short-Term Memory (LSTM) is incorporated to capture motion features of observed frames. Our model provides a simple and efficient modeling framework with a small computational cost. Our E2EMSNet is evaluated on three challenging datasets: BIT, HMDB51, and UCF101. The extensive experiments demonstrate the effectiveness of our method for action prediction in videos.
translated by 谷歌翻译
Gaze estimation is the fundamental basis for many visual tasks. Yet, the high cost of acquiring gaze datasets with 3D annotations hinders the optimization and application of gaze estimation models. In this work, we propose a novel Head-Eye redirection parametric model based on Neural Radiance Field, which allows dense gaze data generation with view consistency and accurate gaze direction. Moreover, our head-eye redirection parametric model can decouple the face and eyes for separate neural rendering, so it can achieve the purpose of separately controlling the attributes of the face, identity, illumination, and eye gaze direction. Thus diverse 3D-aware gaze datasets could be obtained by manipulating the latent code belonging to different face attributions in an unsupervised manner. Extensive experiments on several benchmarks demonstrate the effectiveness of our method in domain generalization and domain adaptation for gaze estimation tasks.
translated by 谷歌翻译